Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity of full counting statistics of free quantum particles in product states (1904.06069v2)

Published 12 Apr 2019 in quant-ph, cond-mat.mes-hall, and cs.CC

Abstract: We study the computational complexity of quantum-mechanical expectation values of single-particle operators in bosonic and fermionic multi-particle product states. Such expectation values appear, in particular, in full-counting-statistics problems. Depending on the initial multi-particle product state, the expectation values may be either easy to compute (the required number of operations scales polynomially with the particle number) or hard to compute (at least as hard as a permanent of a matrix). However, if we only consider full counting statistics in a finite number of final single-particle states, then the full-counting-statistics generating function becomes easy to compute in all the analyzed cases. We prove the latter statement for the general case of the fermionic product state and for the single-boson product state (the same as used in the boson-sampling proposal). This result may be relevant for using multi-particle product states as a resource for quantum computing.

Citations (1)

Summary

We haven't generated a summary for this paper yet.