The Significance of Simple Invariant Solutions in Turbulent Flows (1108.0975v1)
Abstract: Recent remarkable progress in computing power and numerical analysis is enabling us to fill a gap in the dynamical systems approach to turbulence. One of the significant advances in this respect has been the numerical discovery of simple invariant sets, such as nonlinear equilibria and periodic solutions, in well-resolved Navier--Stokes flows. This review describes some fundamental and practical aspects of dynamical systems theory for the investigation of turbulence, focusing on recently found invariant solutions and their significance for the dynamical and statistical characterization of low-Reynolds-number turbulent flows. It is shown that the near-wall regeneration cycle of coherent structures can be reproduced by such solutions. The typical similarity laws of turbulence, i.e. the Prandtl wall law and the Kolmogorov law for the viscous range, as well as the pattern and intensity of turbulence-driven secondary flow in a square duct can also be represented by these simple invariant solutions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.