Subsystem dynamics under random Hamiltonian evolution (1107.6035v3)
Abstract: We study time evolution of a subsystem's density matrix under unitary evolution, generated by a sufficiently complex, say quantum chaotic, Hamiltonian, modeled by a random matrix. We exactly calculate all coherences, purity and fluctuations. We show that the reduced density matrix can be described in terms of a noncentral correlated Wishart ensemble for which we are able to perform analytical calculations of the eigenvalue density. Our description accounts for a transition from an arbitrary initial state towards a random state at large times, enabling us to determine the convergence time after which random states are reached. We identify and describe a number of other interesting features, like a series of collisions between the largest eigenvalue and the bulk, accompanied by a phase transition in its distribution function.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.