Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On $p$-adic Gibbs Measures for Hard Core Model on a Cayley Tree (1107.4884v1)

Published 25 Jul 2011 in math-ph and math.MP

Abstract: In this paper we consider a nearest-neighbor $p$-adic hard core (HC) model, with fugacity $\lambda$, on a homogeneous Cayley tree of order $k$ (with $k + 1$ neighbors). We focus on $p$-adic Gibbs measures for the HC model, in particular on $p$-adic "splitting" Gibbs measures generating a $p$-adic Markov chain along each path on the tree. We show that the $p$-adic HC model is completely different from real HC model: For a fixed $k$ we prove that the $p$-adic HC model may have a splitting Gibbs measure only if $p$ divides $2k-1$. Moreover if $p$ divides $2k-1$ but does not divide $k+2$ then there exists unique translational invariant $p$-adic Gibbs measure. We also study $p$-adic periodic splitting Gibbs measures and show that the above model admits only translational invariant and periodic with period two (chess-board) Gibbs measures. For $p\geq 7$ (resp. $p=2,3,5$) we give necessary and sufficient (resp. necessary) conditions for the existence of a periodic $p$-adic measure. For k=2 a $p$-adic splitting Gibbs measures exists if and only if p=3, in this case we show that if $\lambda$ belongs to a $p$-adic ball of radius 1/27 then there are precisely two periodic (non translational invariant) $p$-adic Gibbs measures. We prove that a $p$-adic Gibbs measure is bounded if and only if $p\ne 3$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.