Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating Diffusion on Finite Multi-Topology Systems Using Ultrametrics (2411.00806v1)

Published 21 Oct 2024 in cs.DM, math-ph, math.AP, and math.MP

Abstract: Motivated by multi-topology building and city model data, first a lossless representation of multiple $T_0$-topologies on a given finite set by a vertex-edge-weighted graph is given, and the subdominant ultrametric of the associated weighted graph distance matrix is proposed as an index structure for these data. This is applied in a heuristic parallel topological sort algorithm for edge-weighted directed acyclic graphs. Such structured data are of interest in simulation of processes like heat flows on building or city models on distributed processors. With this in view, the bulk of this article calculates the spectra of certain unbounded self-adjoint $p$-adic Laplacian operators on the $L2$-spaces of a compact open subdomain of the $p$-adic number field associated with a finite graph $G$ with respect to the restricted Haar measure. as well as to a Radon measure coming from an ultrametric on the vertices of $G$ with the help of $p$-adic polynomial interpolation. In the end, error bounds are given for the solutions of the corresponding heat equations by finite approximations of such operators.

Citations (2)

Summary

We haven't generated a summary for this paper yet.