Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Rank probabilities for real random $N\times N\times 2$ tensors (1106.5581v1)

Published 28 Jun 2011 in math.PR and math.AG

Abstract: We prove that the probability $P_N$ for a real random Gaussian $N\times N\times 2$ tensor to be of real rank $N$ is $P_N=(\Gamma((N+1)/2))N/G(N+1)$, where $\Gamma(x)$, $G(x)$ denote the gamma and Barnes $G$-functions respectively. This is a rational number for $N$ odd and a rational number multiplied by $\pi{N/2}$ for $N$ even. The probability to be of rank $N+1$ is $1-P_N$. The proof makes use of recent results on the probability of having $k$ real generalized eigenvalues for real random Gaussian $N\times N$ matrices. We also prove that $\log P_N= (N2/4)\log (e/4)+(\log N-1)/12-\zeta '(-1)+{\rm O}(1/N)$ for large $N$, where $\zeta$ is the Riemann zeta function.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.