Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Random Matrix Approach to Neural Networks (1702.05419v2)

Published 17 Feb 2017 in math.PR and cs.LG

Abstract: This article studies the Gram random matrix model $G=\frac1T\Sigma{\rm T}\Sigma$, $\Sigma=\sigma(WX)$, classically found in the analysis of random feature maps and random neural networks, where $X=[x_1,\ldots,x_T]\in{\mathbb R}{p\times T}$ is a (data) matrix of bounded norm, $W\in{\mathbb R}{n\times p}$ is a matrix of independent zero-mean unit variance entries, and $\sigma:{\mathbb R}\to{\mathbb R}$ is a Lipschitz continuous (activation) function --- $\sigma(WX)$ being understood entry-wise. By means of a key concentration of measure lemma arising from non-asymptotic random matrix arguments, we prove that, as $n,p,T$ grow large at the same rate, the resolvent $Q=(G+\gamma I_T){-1}$, for $\gamma>0$, has a similar behavior as that met in sample covariance matrix models, involving notably the moment $\Phi=\frac{T}n{\mathbb E}[G]$, which provides in passing a deterministic equivalent for the empirical spectral measure of $G$. Application-wise, this result enables the estimation of the asymptotic performance of single-layer random neural networks. This in turn provides practical insights into the underlying mechanisms into play in random neural networks, entailing several unexpected consequences, as well as a fast practical means to tune the network hyperparameters.

Citations (154)

Summary

We haven't generated a summary for this paper yet.