Nonasymptotic bounds on the estimation error of MCMC algorithms (1106.4739v3)
Abstract: We address the problem of upper bounding the mean square error of MCMC estimators. Our analysis is nonasymptotic. We first establish a general result valid for essentially all ergodic Markov chains encountered in Bayesian computation and a possibly unbounded target function $f$. The bound is sharp in the sense that the leading term is exactly $\sigma_{\mathrm {as}}2(P,f)/n$, where $\sigma_{\mathrm{as}}2(P,f)$ is the CLT asymptotic variance. Next, we proceed to specific additional assumptions and give explicit computable bounds for geometrically and polynomially ergodic Markov chains under quantitative drift conditions. As a corollary, we provide results on confidence estimation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.