Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Nonasymptotic bounds on the estimation error of MCMC algorithms (1106.4739v3)

Published 23 Jun 2011 in stat.ME, math.ST, stat.CO, and stat.TH

Abstract: We address the problem of upper bounding the mean square error of MCMC estimators. Our analysis is nonasymptotic. We first establish a general result valid for essentially all ergodic Markov chains encountered in Bayesian computation and a possibly unbounded target function $f$. The bound is sharp in the sense that the leading term is exactly $\sigma_{\mathrm {as}}2(P,f)/n$, where $\sigma_{\mathrm{as}}2(P,f)$ is the CLT asymptotic variance. Next, we proceed to specific additional assumptions and give explicit computable bounds for geometrically and polynomially ergodic Markov chains under quantitative drift conditions. As a corollary, we provide results on confidence estimation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube