Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Pathlength scaling in graphs with incomplete navigational information (1106.2610v3)

Published 14 Jun 2011 in physics.soc-ph and cs.SI

Abstract: The graph-navigability problem concerns how one can find as short paths as possible between a pair of vertices, given an incomplete picture of a graph. We study the navigability of graphs where the vertices are tagged by a number (between 1 and the total number of vertices) in a way to aid navigation. This information is too little to ensure errorfree navigation but enough, as we will show, for the agents to do significantly better than a random walk. In our setup, given a graph, we first assign information to the vertices that agents can utilize for their navigation. To evaluate the navigation, we calculate the average distance traveled over random pairs of source and target and different graph realizations. We show that this type of embedding can be made quite efficiently; the more information is embedded, the more efficient it gets. We also investigate the embedded navigational information in a standard graph layout algorithm and find that although this information does not make algorithms as efficient as the above-mentioned schemes, it is significantly helpful.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.