Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems (1105.5564v1)

Published 27 May 2011 in math.AP

Abstract: In this paper we prove the existence of infinitely many sign-changing solutions for the system of $m$ Schr\"odinger equations with competition interactions $$ -\Delta u_i+a_i u_i3+\beta u_i \sum_{j\neq i} u_j2 =\lambda_{i,\beta} u_i \quad u_i\in H1_0(\Omega), \quad i=1,...,m $$ where $\Omega$ is a bounded domain, $\beta>0$ and $a_i\geq 0\ \forall i.$ Moreover, for $a_i=0$, we show a relation between critical energies associated with this system and the optimal partition problem $$ \mathop{\inf_{\omega_i\subset \Omega \text{open}}}{\omega_i\cap \omega_j=\emptyset\forall i\neq j} \sum{i=1}{m} \lambda_{k_i}(\omega_i), $$ where $\lambda_{k_i}(\omega)$ denotes the $k_i$--th eigenvalue of $-\Delta$ in $H1_0(\omega)$. In the case $k_i\leq 2$ we show that the optimal partition problem appears as a limiting critical value, as the competition parameter $\beta$ diverges to $+\infty$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.