A Remark on Disk Packings and Numerical Integration of Harmonic Functions (1403.8002v2)
Abstract: We are interested in the following problem: given an open, bounded domain $\Omega \subset \mathbb{R}2$, what is the largest constant $\alpha = \alpha(\Omega) > 0$ such that there exist an infinite sequence of disks $B_1, B_2, \dots, B_N, \dots \subset \mathbb{R}2$ and a sequence $(n_i)$ with $n_i \in \left{1,2\right}$ such that $$ \sup_{N \in \mathbb{N}}{N{\alpha}\left| \chi_{\Omega} - \sum_{i=1}{N}{(-1){n_i}\chi_{B_i}}\right|_{L1(\mathbb{R}2)}} < \infty,$$ where $\chi$ denotes the characteristic function? We prove that certain (somewhat peculiar) domains $\Omega \subset \mathbb{R}2$ satisfy the property with $\alpha = 0.53$. For these domains there exists a sequence of points $(x_i){i=1}{\infty}$ in $\Omega$ with weights $(a_i){i=1}{\infty}$ such that for all harmonic functions $u:\mathbb{R}2 \rightarrow \mathbb{R}$ $$ \left|\int_{\Omega}{u(x)dx} - \sum_{i=1}{N}{a_i u(x_i)}\right| \leq C_{\Omega}\frac{|u|{L{\infty}(\Omega)}}{N{0.53}},$$ where $C{\Omega}$ depends only on $\Omega$. This gives a Quasi-Monte-Carlo method for harmonic functions which improves on the probabilistic Monte-Carlo bound $|u|_{L{2}(\Omega)}/N{0.5}$ \textit{without} introducing a dependence on the total variation. We do not know which decay rates are optimal.