Multiplicity free Schur, skew Schur, and quasisymmetric Schur functions (1105.4212v2)
Abstract: In this paper we classify all Schur functions and skew Schur functions that are multiplicity free when expanded in the basis of fundamental quasisymmetric functions, termed F-multiplicity free. Combinatorially, this is equivalent to classifying all skew shapes whose standard Young tableaux have distinct descent sets. We then generalize our setting, and classify all F-multiplicity free quasisymmetric Schur functions with one or two terms in the expansion, or one or two parts in the indexing composition. This identifies composition shapes such that all standard composition tableaux of that shape have distinct descent sets. We conclude by providing such a classification for quasisymmetric Schur function families, giving a classification of Schur functions that are in some sense almost F-multiplicity free.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.