Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multigraph Approach for Performing the Quantum Schur Transform (2204.10694v1)

Published 22 Apr 2022 in quant-ph, cs.DM, math.CO, and math.RT

Abstract: We take inspiration from the Okounkov-Vershik approach to the representation theory of the symmetric groups to develop a new way of understanding how the Schur-Weyl duality can be used to perform the Quantum Schur Transform. The Quantum Schur Transform is a unitary change of basis transformation between the computational basis of $(\mathbb{C}d){\otimes n}$ and the Schur-Weyl basis of $(\mathbb{C}d){\otimes n}$. We describe a new multigraph, which we call the Schur-Weyl-Young graph, that represents both standard Weyl tableaux and standard Young tableaux in the same diagram. We suggest a major improvement on Louck's formula for calculating the transition amplitudes between two standard Weyl tableaux appearing in adjacent levels of the Schur-Weyl-Young graph for the case $d=2$, merely by looking at the entries in the two tableaux. The key theoretical component that underpins our results is the discovery of a branching rule for the Schur-Weyl states, which we call the Schur-Weyl branching rule. This branching rule allows us to perform the change of basis transformation described above in a straightforward manner for any $n$ and $d$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.