Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weighted power variation of integrals with respect to a Gaussian process

Published 8 May 2011 in math.PR | (1105.1503v2)

Abstract: We consider a stochastic process $Y$ defined by an integral in quadratic mean of a deterministic function $f$ with respect to a Gaussian process $X$, which need not have stationary increments. For a class of Gaussian processes $X$, it is proved that sums of properly weighted powers of increments of $Y$ over a sequence of partitions of a time interval converge almost surely. The conditions of this result are expressed in terms of the $p$-variation of the covariance function of $X$. In particular, the result holds when $X$ is a fractional Brownian motion, a subfractional Brownian motion and a bifractional Brownian motion.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.