Tree-Structured Random Vector Quantization for Limited-Feedback Wireless Channels (1104.4607v2)
Abstract: We consider the quantization of a transmit beamforming vector in multiantenna channels and of a signature vector in code division multiple access (CDMA) systems. Assuming perfect channel knowledge, the receiver selects for a transmitter the vector that maximizes the performance from a random vector quantization (RVQ) codebook, which consists of independent isotropically distributed unit-norm vectors. The quantized vector is then relayed to the transmitter via a rate-limited feedback channel. The RVQ codebook requires an exhaustive search to locate the selected entry. To reduce the search complexity, we apply generalized Lloyd or $k$-dimensional (kd)-tree algorithms to organize RVQ entries into a tree. In examples shown, the search complexity of tree-structured (TS) RVQ can be a few orders of magnitude less than that of the unstructured RVQ for the same performance. We also derive the performance approximation for TS-RVQ in a large system limit, which predicts the performance of a moderate-size system very well.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.