Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust recovery of multiple subspaces by geometric l_p minimization (1104.3770v2)

Published 19 Apr 2011 in stat.ML, math.ST, and stat.TH

Abstract: We assume i.i.d. data sampled from a mixture distribution with K components along fixed d-dimensional linear subspaces and an additional outlier component. For p>0, we study the simultaneous recovery of the K fixed subspaces by minimizing the l_p-averaged distances of the sampled data points from any K subspaces. Under some conditions, we show that if $0<p\leq1$, then all underlying subspaces can be precisely recovered by l_p minimization with overwhelming probability. On the other hand, if K\>1 and p>1, then the underlying subspaces cannot be recovered or even nearly recovered by l_p minimization. The results of this paper partially explain the successes and failures of the basic approach of l_p energy minimization for modeling data by multiple subspaces.

Citations (87)

Summary

We haven't generated a summary for this paper yet.