Papers
Topics
Authors
Recent
2000 character limit reached

Miniversal deformations of pairs of skew-symmetric matrices under congruence (1104.2492v2)

Published 13 Apr 2011 in math.RT

Abstract: Miniversal deformations for pairs of skew-symmetric matrices under congruence are constructed. To be precise, for each such a pair $(A,B)$ we provide a normal form with a minimal number of independent parameters to which all pairs of skew-symmetric matrices $(\widetilde{A},\widetilde{B})$, close to $(A,B)$ can be reduced by congruence transformation which smoothly depends on the entries of the matrices in the pair $(\widetilde{A},\widetilde{B})$. An upper bound on the distance from such a miniversal deformation to $(A,B)$ is derived too. We also present an example of using miniversal deformations for analyzing changes in the canonical structure information (i.e. eigenvalues and minimal indices) of skew-symmetric matrix pairs under perturbations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.