Random rigidity in the free group (1104.1768v2)
Abstract: We prove a rigidity theorem for the geometry of the unit ball in random subspaces of the scl norm in B_1H of a free group. In a free group F of rank k, a random word w of length n (conditioned to lie in [F,F]) has scl(w)=log(2k-1)n/6log(n) + o(n/log(n)) with high probability, and the unit ball in a subspace spanned by d random words of length O(n) is C0 close to a (suitably affinely scaled) octahedron. A conjectural generalization to hyperbolic groups and manifolds (discussed in the appendix) would show that the length of a random geodesic in a hyperbolic manifold can be recovered from the bounded cohomology of the fundamental group.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.