Derandomized Non-Abelian Homomorphism Testing in Low Soundness Regime (2405.18998v2)
Abstract: We give a randomness-efficient homomorphism test in the low soundness regime for functions, $f: G\to \mathbb{U}_t$, from an arbitrary finite group $G$ to $t\times t$ unitary matrices. We show that if such a function passes a derandomized Blum--Luby--Rubinfeld (BLR) test (using small-bias sets), then (i) it correlates with a function arising from a genuine homomorphism, and (ii) it has a non-trivial Fourier mass on a low-dimensional irreducible representation. In the full randomness regime, such a test for matrix-valued functions on finite groups implicitly appears in the works of Gowers and Hatami [Sbornik: Mathematics '17], and Moore and Russell [SIAM Journal on Discrete Mathematics '15]. Thus, our work can be seen as a near-optimal derandomization of their results. Our key technical contribution is a "degree-2 expander mixing lemma'' that shows that Gowers' $\mathrm{U}2$ norm can be efficiently estimated by restricting it to a small-bias subset. Another corollary is a "derandomized'' version of a useful lemma due to Babai, Nikolov, and Pyber [SODA'08] and Gowers [Comb. Probab. Comput.'08].
- Simple constructions of almost kđkitalic_k-wise independent random variables. Random Structures & Algorithms, 3(3):289â304, 1992.
- Random Cayley Graphs and Expanders. 5(2):271â285, 1994. doi:10.1002/rsa.3240050203.
- Linearity testing in characteristic two. In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, pages 432â441, 1995.
- Near representations of finite groups, 2003. Manuscript.
- Mixing of 3-term progressions in Quasirandom Groups. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022), pages 20:1â20:9, 2022. arXiv:2109.12627, doi:10.4230/LIPIcs.ITCS.2022.20.
- Optimal inapproximability of satisfiable k-LIN over non-abelian groups. In Proceedings of the 53rd ACM Symposium on Theory of Computing, 2021. doi:10.1145/3406325.3451003.
- On approximability of satisfiable k-CSPs: I. In Proceedings of the 54th ACM Symposium on Theory of Computing, 2022. doi:10.1145/3519935.3520028.
- Self-testing/correcting with applications to numerical problems. In Proceedings of the 22nd ACM Symposium on Theory of Computing, pages 73â83, 1990. doi:10.1145/100216.100225.
- Product growth and mixing in finite groups. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms, 2008.
- Non-Abelian homomorphism testing, and distributions close to their self-convolutions. Random Structures & Algorithms, 32(1):49â70, August 2007. doi:10.1002/rsa.20182.
- On approximate group homomorphisms. Journal of Mathematical Analysis and Applications, 462(1):505â520, 2018. doi:10.1016/j.jmaa.2018.02.017.
- Randomness-efficient low degree tests and short PCPs via Δđ\varepsilonitalic_Δ-biased sets. In Proceedings of the 35th ACM Symposium on Theory of Computing, pages 612â621, 2003. doi:10.1145/780542.780631.
- Operator algebraic approach to inverse and stability theorems for amenable groups. Mathematika, 65(1):98â118, August 2018. arXiv:1706.04544, doi:10.1112/s0025579318000335.
- Improved pseudorandom generators for depth 2 circuits. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2010. doi:10.1007/978-3-642-15369-3_38.
- P. Eymard. LâalgĂ©bre de Fourier dâun groupe localement compact. Bulletin de la SociĂ©tĂ© MathĂ©matique de France, 92:181â236, 1964. doi:10.24033/bsmf.1607.
- Ilijas Farah. Approximate homomorphisms II: Group homomorphisms. Combinatorica, 20(1):47â60, 2000. doi:10.1007/s004930070030.
- On a conjecture of marton, 2023. arXiv:2311.05762.
- Inverse and stability theorems for approximate representations of finite groups. Sbornik: Mathematics, 208(12):1784, 2017. arXiv:1510.04085, doi:10.1070/SM8872.
- W. T. Gowers. Quasirandom Groups. Combinatorics, Probability and Computing, 17(3):363â387, May 2008. arXiv:0710.3877, doi:10.1017/S0963548307008826.
- A quantitative version of the idempotent theorem in harmonic analysis. Annals of Mathematics, 168(3):1025â1054, November 2008. doi:10.4007/annals.2008.168.1025.
- Paradigms for unconditional pseudorandom generators. Foundations and Trends in Theoretical Computer Science, 16(1-2):1â210, 2024. doi:10.1561/0400000109.
- Dimension-free bounds and structural results in communication complexity. Israel Journal of Mathematics, 253(2):555â616, October 2022. doi:10.1007/s11856-022-2365-8.
- Expander graphs and their applications. Bulletin of the American Mathematical Society, 43(04):439â562, 2006. doi:10.1090/S0273-0979-06-01126-8.
- Simple analysis of graph tests for linearity and PCP. Random Structures & Algorithms, 22(2):139â160, 2003. doi:10.1002/rsa.10068.
- Almost Ramanujan Expanders from Arbitrary Expanders via Operator Amplification. In Proceedings of the 63rd IEEE Symposium on Foundations of Computer Science, 2022. arXiv:2209.07024, doi:10.1109/FOCS54457.2022.00043.
- MIP* = RE. Commun. ACM, 64(11):131â138, 2021. doi:10.1145/3485628.
- Martin Kassabov. Symmetric groups and expander graphs. Inventiones mathematicae, 170(2):327â354, November 2007. doi:10.1007/s00222-007-0065-y.
- M. Kiwi. Algebraic testing and weight distributions of codes. Theoretical Computer Science, 299(1):81â106, 2003. doi:10.1016/S0304-3975(02)00816-2.
- Learning decision trees using the fourier spectrum. SIAM Journal on Computing, 22(6):1331â1348, 1993. doi:10.1137/0222080.
- Z. Kelley and R. Meka. Strong bounds for 3-progressions. In Proceedings of the 64th IEEE Symposium on Foundations of Computer Science, pages 933â973, 2023. arXiv:2302.05537, doi:10.1109/FOCS57990.2023.00059.
- Universal lattices and Property Ïđ\tauitalic_Ï. Inventiones mathematicae, 165(1):209â224, July 2006. arXiv:math/0502112, doi:10.1007/s00222-005-0498-0.
- Alexander Lubotzky. Finite simple groups of Lie type as expanders. Journal of the European Mathematical Society, pages 1331â1341, 2011. doi:10.4171/JEMS/282.
- Approximate representations, approximate homomorphisms, and low-dimensional embeddings of groups. SIAM Journal on Discrete Mathematics, 29(1):182â197, 2015. arXiv:1009.6230, doi:10.1137/140958578.
- J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications. In Proceedings of the 22nd ACM Symposium on Theory of Computing, pages 213â223, 1990. doi:10.1137/0222053.
- J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications. SIAM Journal on Computing, 22(4):838â856, 1993. doi:10.1137/0222053.
- A quantum linearity test for robustly verifying entanglement. In Proceedings of the 49th ACM Symposium on Theory of Computing, 2017. doi:10.1145/3055399.3055468.
- Explicit orthogonal and unitary designs. In Proceedings of the 64th IEEE Symposium on Foundations of Computer Science, 2023. doi:10.1109/FOCS57990.2023.00073.
- A. Samorodnitsky. Low-degree tests at large distances. In Proceedings of the 39th ACM Symposium on Theory of Computing, pages 506â515, 2007.
- Tom Sanders. A Quantitative Version of the Non-Abelian Idempotent Theorem. Geometric and Functional Analysis, 21(1):141â221, February 2011. doi:10.1007/s00039-010-0107-2.
- Tom Sanders. On the Bogolyubov-Ruzsa lemma. Analysis & PDE, 5(3), 2012. arXiv:1011.0107, doi:10.2140/apde.2012.5.627.
- Tom Sanders. Coset decision trees and the Fourier algebra. Journal dâAnalyse MathĂ©matique, 144(1):227â259, December 2021. doi:10.1007/s11854-021-0179-y.
- A PCP characterization of NP with optimal amortized query complexity. In Proceedings of the 32nd ACM Symposium on Theory of Computing, 2000. doi:10.1145/335305.335329.
- On the Structure of Boolean Functions with Small Spectral Norm. Computational Complexity, 26(1):229â273, March 2017. doi:10.1007/s00037-015-0110-y.
- Derandomizing Homomorphism Testing in General Groups. In Proceedings of the 36th ACM Symposium on Theory of Computing, page 18, 2004. doi:10.1137/S009753970444658X.
- Derandomizing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications. Theory of Computing, 4(3):53â76, 2008. doi:10.4086/toc.2008.v004a003.