Papers
Topics
Authors
Recent
Search
2000 character limit reached

Periodic orbits, basins of attraction and chaotic beats in two coupled Kerr oscillators

Published 23 Feb 2011 in nlin.CD and physics.optics | (1102.4734v1)

Abstract: Kerr oscillators are model systems which have practical applications in nonlinear optics. Optical Kerr effect i.e. interaction of optical waves with nonlinear medium with polarizability $\chi{(3)}$ is the basic phenomenon needed to explain for example the process of light transmission in fibers and optical couplers. In this paper we analyze the two Kerr oscillators coupler and we show that there is a possibility to control the dynamics of this system, especially by switching its dynamics from periodic to chaotic motion and vice versa. Moreover the switching between two different stable periodic states is investigated. The stability of the system is described by the so-called maps of Lyapunov exponents in parametric spaces. Comparison of basins of attractions between two Kerr couplers and a single Kerr system is also presented.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.