Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinearity-induced symmetry breaking in a system of two parametrically driven Kerr-Duffing oscillators (2405.01377v3)

Published 2 May 2024 in physics.class-ph, cond-mat.mes-hall, and physics.optics

Abstract: We study the classical dynamics of a system comprising a pair of Kerr-Duffing nonlinear oscillators, which are coupled through a nonlinear interaction and subjected to a parametric drive. Using the rotating wave approximation (RWA), we analyze the steady-state solutions for the amplitudes of the two oscillators. For the case of almost identical oscillators, we investigate separately the cases in which only one oscillator is parametrically driven and in which both oscillators are simultaneously driven. In the latter regime, we demonstrate that even when the parametric drives acting on the two oscillators are identical, the system can transition from a stable Nesymmetric solution to a broken-symmetry solution as the detuning is varied.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. M. Dykman, Fluctuating nonlinear oscillators: from nanomechanics to quantum superconducting circuits (Oxford University Press, 2012).
  2. A. Cleland, Foundation of nanomechanics: from solid-state theory to device applications (Springer Berlin, Heidelberg, 2003).
  3. S. Schmid, L. Villanueva, and M. Roukes, Fundamental of nanomechanical resonators (Springer Cham, 2016).
  4. A. Cleland and M. Roukes, Noise processes in nanomechanical resonators, J. App. Phys. 92, 2758 (2002).
  5. R. Lifshitz and M. Cross, Nonlinear dynamics of nanomechanical and micromechanical resonators (H.G. Schuster, Wiley Meinheim Press, 2008) Chap. 1 in ”Review of nonlinear dynamics and complexity”.
  6. M. Poot and H. van der Zant, Mechanical systems in the quantum regime, Phys. Rep. 511, 273 (2012).
  7. J. Rhoads, S. Shaw, and K. L. Turner, Nonlinear dynamics and its applications in micro- and nano-resonators, J. Dyn. Sys. Meas. Control. 132, 034001 (2010).
  8. A. Bachtold, J. Moser, and M. I. Dykman, Mesoscopic physics of nanomechanical systems, Rev. Mod. Phys. 94, 045005 (2022).
  9. L. A. Lugiato, Optical bistability, Contemporary Physics 24, 333 (1983).
  10. P. N. Butcher and D. Cotter, The elements of nonlinear optics, Cambridge Studies in Modern Optics (Cambridge University Press, 2008).
  11. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  12. D. F. Walls and G. Milburn, Quantum Optics (Springer Verlag, Berlin, 2006).
  13. P. D. Drummond and M. Hillery, The quantum theory of nonlinear optics (Cambridge University Press, 2014).
  14. A. Nayfeh and D. Mook, Nonlinear oscillationss (Wiley-VCH Press, 1979).
  15. A. Vinante, Thermal frequency noise in micromechanical resonators due to nonlinear mode coupling, Physical Review B 90, 024308 (2014).
  16. F. Mangussi and D. H. Zanette, Internal resonance in a vibrating beam: A zoo of nonlinear resonance peaks, PLOS ONE 11, e0162365 (2016).
  17. X. Dong, M. Dykman, and H. Chan, Strong negative nonlinear friction from induced two-phonon processes in vibrational systems, Nat. Comm. 9, 3241 (2018).
  18. J. P. Mathew, A. Bhushan, and M. M. Deshmukh, Tension mediated nonlinear coupling between orthogonal mechanical modes of nanowire resonators, Solid State Communications 282, 17 (2018).
  19. K. Gajo, G. Rastelli, and E. M. Weig, Tuning the nonlinear dispersive coupling of nanomechanical string resonators, Physical Review B 101, 075420 (2020).
  20. I. Carusotto and C. Ciuti, Quantum fluids of light, Reviews of Modern Physics 85, 299 (2013).
  21. M. Wouters and I. Carusotto, Parametric oscillation threshold of semiconductor microcavities in the strong coupling regime, Physical Review B 75, 075332 (2007).
  22. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851 (1993).
  23. V. Savona, Spontaneous symmetry breaking in a quadratically driven nonlinear photonic lattice, Phys. Rev. A 96, 033826 (2017).
  24. A. Nagy and V. Savona, Driven-dissipative quantum monte carlo method for open quantum systems, Phys. Rev. A 97, 052129 (2018).
  25. K. Seibold, R. Rota, and V. Savona, Dissipative time crystal in an asymmetric nonlinear photonic dimer, Phys. Rev. A 101, 033839 (2020).
  26. F. Minganti, V. Savona, and A. Biella, Dissipative phase transitions in n𝑛nitalic_n-photon driven quantum nonlinear resonators, Quantum 7, 1170 (2023).

Summary

We haven't generated a summary for this paper yet.