Papers
Topics
Authors
Recent
2000 character limit reached

A Nonlinear Elliptic PDE with Two Sobolev-Hardy Critical Exponents

Published 21 Feb 2011 in math.AP | (1102.4134v1)

Abstract: In this paper, we consider the following PDE involving two Sobolev-Hardy critical exponents, \label{0.1} {& \Delta u + \lambda\frac{u{2*(s_1)-1}}{|x|{s_1}} + \frac{u{2*(s_2)-1}}{|x|{s_2}} =0 \text{in} \Omega, & u=0 \qquad \text{on} \Omega, where $0 \le s_2 < s_1 \le 2$, $0 \ne \lambda \in \Bbb R$ and $0 \in \partial \Omega$. The existence (or nonexistence) for least-energy solutions has been extensively studied when $s_1=0$ or $s_2=0$. In this paper, we prove that if $0< s_2 < s_1 <2$ and the mean curvature of $\partial \Omega$ at 0 $H(0)<0$, then \eqref{0.1} has a least-energy solution. Therefore, this paper has completed the study of \eqref{0.1} for the least-energy solutions. We also prove existence or nonexistence of positive entire solutions of \eqref{0.1} with $\Omega =\rn$ under different situations of $s_1, s_2$ and $\lambda$.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.