Universal approximation using differentiators and application to feedback control (1102.2794v1)
Abstract: In this paper, we consider the problems of approximating uncertainties and feedback control for a class of nonlinear systems without full-known states, and two approximation methods are proposed: universal approximation using integral-chain differentiator or extended observer. Comparing to the approximations by fuzzy system and radial-based-function (RBF) neural networks, the presented two methods can not only approximate universally the uncertainties, but also estimate the unknown states. Moreover, the integral-chain differentiator can restrain noises thoroughly. The theoretical results are confirmed by computer simulations for feedback control.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.