Equivariant Gerbes on Complex Tori (1102.2312v3)
Abstract: We explore a new direction in representation theory which comes from holomorphic gerbes on complex tori. The analogue of the theta group of a holomorphic line bundle on a (compact) complex torus is developed for gerbes in place of line bundles. The theta group of symmetries of the gerbe has the structure of a Picard groupoid. We calculate it explicitly as a central extension of the group of symmetries of the gerbe by the Picard groupoid of the underlying complex torus. We discuss obstruction to equivariance and give an example of a group of symmetries of a gerbe with respect to which the gerbe cannot be equivariant. We survey various types of representations of the group of symmetries of a gerbe on the stack of sheaves of modules on the gerbe and the associated abelian category of sheaves on the gerbe (twisted sheaves).
Collections
Sign up for free to add this paper to one or more collections.