Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Matrix completion with column manipulation: Near-optimal sample-robustness-rank tradeoffs (1102.2254v2)

Published 10 Feb 2011 in stat.ML, cs.IT, and math.IT

Abstract: This paper considers the problem of matrix completion when some number of the columns are completely and arbitrarily corrupted, potentially by a malicious adversary. It is well-known that standard algorithms for matrix completion can return arbitrarily poor results, if even a single column is corrupted. One direct application comes from robust collaborative filtering. Here, some number of users are so-called manipulators who try to skew the predictions of the algorithm by calibrating their inputs to the system. In this paper, we develop an efficient algorithm for this problem based on a combination of a trimming procedure and a convex program that minimizes the nuclear norm and the $\ell_{1,2}$ norm. Our theoretical results show that given a vanishing fraction of observed entries, it is nevertheless possible to complete the underlying matrix even when the number of corrupted columns grows. Significantly, our results hold without any assumptions on the locations or values of the observed entries of the manipulated columns. Moreover, we show by an information-theoretic argument that our guarantees are nearly optimal in terms of the fraction of sampled entries on the authentic columns, the fraction of corrupted columns, and the rank of the underlying matrix. Our results therefore sharply characterize the tradeoffs between sample, robustness and rank in matrix completion.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube