Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost-graded central extensions of Lax operator algebra (1102.1962v1)

Published 9 Feb 2011 in math.QA, math-ph, math.AG, and math.MP

Abstract: Lax operator algebras constitute a new class of infinite dimensional Lie algebras of geometric origin. More precisely, they are algebras of matrices whose entries are meromorphic functions on a compact Riemann surface. They generalize classical current algebras and current algebras of Krichever-Novikov type. Lax operators for $\gl(n)$, with the spectral parameter on a Riemann surface, were introduced by Krichever. In joint works of Krichever and Sheinman their algebraic structure was revealed and extended to more general groups. These algebras are almost-graded. In this article their definition is recalled and classification and uniqueness results for almost-graded central extensions for this new class of algebras are presented. The explicit forms of the defining cocycles are given. If the finite-dimensional Lie algebra on which the Lax operator algebra is based is simple then, up to equivalence and rescaling of the central element, there is a unique non-trivial almost-graded central extension. These results are joint work with Oleg Sheinman. This is an extended write-up of a talk presented at the 5 th Baltic-Nordic AGMP Workshop: Bedlewo, 12-16 October, 2009

Summary

We haven't generated a summary for this paper yet.