Sparsity considerations for dependent observations (1102.1615v5)
Abstract: The aim of this paper is to provide a comprehensive introduction for the study of L1-penalized estimators in the context of dependent observations. We define a general $\ell_{1}$-penalized estimator for solving problems of stochastic optimization. This estimator turns out to be the LASSO in the regression estimation setting. Powerful theoretical guarantees on the statistical performances of the LASSO were provided in papers, however, they usually only deal with the iid case. Here, we study our estimator under various dependence assumptions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.