Papers
Topics
Authors
Recent
2000 character limit reached

Structure Theorems for Basic Algebras (1102.1100v1)

Published 5 Feb 2011 in math.RT and math.RA

Abstract: A basic finite dimensional algebra over an algebraically closed field $k$ is isomorphic to a quotient of a tensor algebra by an admissible ideal. The category of left modules over the algebra is isomorphic to the category of representations of a finite quiver with relations. In this article we will remove the assumption that $k$ is algebraically closed to look at both perfect and non-perfect fields. We will introduce the notion of species with relations to describe the category of left modules over such algebras. If the field is not perfect, then the algebra is isomorphic to a quotient of a tensor algebra by an ideal that is no longer admissible in general. This gives hereditary algebras isomorphic to a quotient of a tensor algebra by a non-zero ideal. We will show that these non-zero ideals correspond to cyclic subgraphs of the graph associated to the species of the algebra. This will lead to the ideal being zero in the case when the underlying graph of the algebra is a tree.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.