Papers
Topics
Authors
Recent
2000 character limit reached

The free energy in a magnetic field and the universal scaling equation of state for the three-dimensional Ising model

Published 22 Dec 2010 in hep-lat and cond-mat.stat-mech | (1012.5004v1)

Abstract: We have substantially extended the high-temperature and low-magnetic-field (and the related low-temperature and high-magnetic-field) bivariate expansions of the free energy for the conventional three-dimensional Ising model and for a variety of other spin systems generally assumed to belong to the same critical universality class. In particular, we have also derived the analogous expansions for the Ising models with spin s=1,3/2,.. and for the lattice euclidean scalar field theory with quartic self-interaction, on the simple cubic and the body-centered cubic lattices. Our bivariate high-temperature expansions, which extend through K24, enable us to compute, through the same order, all higher derivatives of the free energy with respect to the field, namely all higher susceptibilities. These data make more accurate checks possible, in critical conditions, both of the scaling and the universality properties with respect to the lattice and the interaction structure and also help to improve an approximate parametric representation of the critical equation of state for the three-dimensional Ising model universality class.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.