Papers
Topics
Authors
Recent
Search
2000 character limit reached

Outliers in the spectrum of iid matrices with bounded rank perturbations

Published 21 Dec 2010 in math.PR | (1012.4818v6)

Abstract: It is known that if one perturbs a large iid random matrix by a bounded rank error, then the majority of the eigenvalues will remain distributed according to the circular law. However, the bounded rank perturbation may also create one or more outlier eigenvalues. We show that if the perturbation is small, then the outlier eigenvalues are created next to the outlier eigenvalues of the bounded rank perturbation; but if the perturbation is large, then many more outliers can be created, and their law is governed by the zeroes of a random Laurent series with Gaussian coefficients. On the other hand, these outliers may be eliminated by enforcing a row sum condition on the final matrix.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.