Papers
Topics
Authors
Recent
2000 character limit reached

The Universal RG Machine

Published 14 Dec 2010 in hep-th and gr-qc | (1012.3081v1)

Abstract: Functional Renormalization Group Equations constitute a powerful tool to encode the perturbative and non-perturbative properties of a physical system. We present an algorithm to systematically compute the expansion of such flow equations in a given background quantity specified by the approximation scheme. The method is based on off-diagonal heat-kernel techniques and can be implemented on a computer algebra system, opening access to complex computations in, e.g., Gravity or Yang-Mills theory. In a first illustrative example, we re-derive the gravitational $\beta$-functions of the Einstein-Hilbert truncation, demonstrating their background-independence. As an additional result, the heat-kernel coefficients for transverse vectors and transverse-traceless symmetric matrices are computed to second order in the curvature.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.