Generating constrained random graphs using multiple edge switches (1012.3023v2)
Abstract: The generation of random graphs using edge swaps provides a reliable method to draw uniformly random samples of sets of graphs respecting some simple constraints, e.g. degree distributions. However, in general, it is not necessarily possible to access all graphs obeying some given con- straints through a classical switching procedure calling on pairs of edges. We therefore propose to get round this issue by generalizing this classical approach through the use of higher-order edge switches. This method, which we denote by "k-edge switching", makes it possible to progres- sively improve the covered portion of a set of constrained graphs, thereby providing an increasing, asymptotically certain confidence on the statistical representativeness of the obtained sample.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.