Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Robust Distributed Online Prediction (1012.1370v1)

Published 7 Dec 2010 in cs.LG and math.OC

Abstract: The standard model of online prediction deals with serial processing of inputs by a single processor. However, in large-scale online prediction problems, where inputs arrive at a high rate, an increasingly common necessity is to distribute the computation across several processors. A non-trivial challenge is to design distributed algorithms for online prediction, which maintain good regret guarantees. In \cite{DMB}, we presented the DMB algorithm, which is a generic framework to convert any serial gradient-based online prediction algorithm into a distributed algorithm. Moreover, its regret guarantee is asymptotically optimal for smooth convex loss functions and stochastic inputs. On the flip side, it is fragile to many types of failures that are common in distributed environments. In this companion paper, we present variants of the DMB algorithm, which are resilient to many types of network failures, and tolerant to varying performance of the computing nodes.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.