Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

A quenched large deviation principle and a Parisi formula for a Perceptron version of the GREM (1011.5686v1)

Published 25 Nov 2010 in math.PR

Abstract: We introduce a perceptron version of the Generalized Random Energy Model, and prove a quenched Sanov type large deviation principle for the empirical distribution of the random energies. The dual of the rate function has a representation through a variational formula which is closely related to the Parisi variational formula for the SK-model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.