Papers
Topics
Authors
Recent
2000 character limit reached

Cohomology of real Grassmann manifold and KP flow (1011.2134v1)

Published 9 Nov 2010 in math.AG, math-ph, math.AT, math.CO, math.MP, math.RT, and nlin.SI

Abstract: We consider a realization of the real Grassmann manifold Gr(k,n) based on a particular flow defined by the corresponding (singular) solution of the KP equation. Then we show that the KP flow can provide an explicit and simple construction of the incidence graph for the integral cohomology of Gr(k,n). It turns out that there are two types of graphs, one for the trivial coefficients and other for the twisted coefficients, and they correspond to the homology groups of the orientable and non-orientable cases of Gr(k,n) via the Poincare-Lefschetz duality. We also derive an explicit formula of the Poincare polynomial for Gr(k,n) and show that the Poincare polynomial is also related to the number of points on a suitable version of Gr(k,n) over a finite field $\F_q$ with q being a power of a prime. In particular, we find that the number of $\F_q$ points on Gr(k,n) can be computed by counting the number of singularities along the KP flow.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.