Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving the Estimation of Star formation Rates and Stellar Population Ages of High-redshift Galaxies from Broadband Photometry (1010.1966v2)

Published 10 Oct 2010 in astro-ph.CO

Abstract: We explore methods to improve the estimates of star formation rates and mean stellar population ages from broadband photometry of high redshift star-forming galaxies. We use synthetic spectral templates with a variety of simple parametric star formation histories to fit broadband spectral energy distributions. These parametric models are used to infer ages, star formation rates and stellar masses for a mock data set drawn from a hierarchical semi-analytic model of galaxy evolution. Traditional parametric models generally assume an exponentially declining rate of star-formation after an initial instantaneous rise. Our results show that star formation histories with a much more gradual rise in the star formation rate are likely to be better templates, and are likely to give better overall estimates of the age distribution and star formation rate distribution of Lyman break galaxies. For B- and V-dropouts, we find the best simple parametric model to be one where the star formation rate increases linearly with time. The exponentially-declining model overpredicts the age by 100 % and 120 % for B- and V-dropouts, on average, while for a linearly-increasing model, the age is overpredicted by 9 % and 16 %, respectively. Similarly, the exponential model underpredicts star-formation rates by 56 % and 60 %, while the linearly-increasing model underpredicts by 15 % 22 %, respectively. For U-dropouts, the models where the star-formation rate has a peak (near z ~ 3) provide the best match for age -- overprediction is reduced from 110 % to 26 % -- and star-formation rate -- underprediction is reduced from 58 % to 22 %. We classify different types of star-formation histories in the semi-analytic models and show how the biases behave for the different classes. We also provide two-band calibration formulae for stellar mass and star formation rate estimations.

Citations (89)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.