Combinatorial bases for covariant representations of the Lie superalgebra gl(m|n) (1010.0463v2)
Abstract: Covariant tensor representations of gl(m|n) occur as irreducible components of tensor powers of the natural (m+n)-dimensional representation. We construct a basis of each covariant representation and give explicit formulas for the action of the generators of gl(m|n) in this basis. The basis has the property that the natural Lie subalgebras gl(m) and gl(n) act by the classical Gelfand-Tsetlin formulas. The main role in the construction is played by the fact that the subspace of gl(m)-highest vectors in any finite-dimensional irreducible representation of gl(m|n) carries a structure of an irreducible module over the Yangian Y(gl(n)). One consequence is a new proof of the character formula for the covariant representations first found by Berele and Regev and by Sergeev.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.