Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bernstein-Gelfand-Gelfand resolutions for linear superalgebras (1209.6219v1)

Published 27 Sep 2012 in math.RT, math-ph, and math.MP

Abstract: In this paper we construct resolutions of finite dimensional irreducible gl(m|n)-modules in terms of generalized Verma modules. The resolutions are determined by the Kostant cohomology groups and extend the strong (Lepowsky-)Bernstein-Gelfand-Gelfand resolutions to the setting of Lie superalgebras. It is known that such resolutions for finite dimensional representations of Lie superalgebras do not exist in general. Thus far they have only been discovered for gl(m|n) in case the parabolic subalgebra has reductive part equal to gl(m)+gl(n) and for tensor modules. In the current paper we prove the existence of the resolutions for tensor modules of gl(m|n) or sl(m|n) and their duals for an extensive class of parabolic subalgebras including the ones already considered in the literature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.