Papers
Topics
Authors
Recent
Search
2000 character limit reached

Degenerate homogeneous parabolic equations associated with the infinity-Laplacian

Published 16 Sep 2010 in math.AP | (1009.3166v1)

Abstract: We prove existence and uniqueness of viscosity solutions to the degenerate parabolic problem $u_t = \Delta_\inftyh u$ where $\Delta_\inftyh$ is the $h$-homogeneous operator associated with the infinity-Laplacian, $\Delta_\inftyh u = |Du|{h-3} < D2uDu,Du>$. We also derive the asymptotic behavior of $u$ for the problem posed in the whole space and for the Dirichlet problem with zero boundary conditions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.