Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emotional State Categorization from Speech: Machine vs. Human (1009.0108v1)

Published 1 Sep 2010 in cs.CL, cs.AI, and cs.HC

Abstract: This paper presents our investigations on emotional state categorization from speech signals with a psychologically inspired computational model against human performance under the same experimental setup. Based on psychological studies, we propose a multistage categorization strategy which allows establishing an automatic categorization model flexibly for a given emotional speech categorization task. We apply the strategy to the Serbian Emotional Speech Corpus (GEES) and the Danish Emotional Speech Corpus (DES), where human performance was reported in previous psychological studies. Our work is the first attempt to apply machine learning to the GEES corpus where the human recognition rates were only available prior to our study. Unlike the previous work on the DES corpus, our work focuses on a comparison to human performance under the same experimental settings. Our studies suggest that psychology-inspired systems yield behaviours that, to a great extent, resemble what humans perceived and their performance is close to that of humans under the same experimental setup. Furthermore, our work also uncovers some differences between machine and humans in terms of emotional state recognition from speech.

Citations (5)

Summary

We haven't generated a summary for this paper yet.