Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 109 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Separation of trajectories and its Relation to Entropy for Intermittent Systems with a Zero Lyapunov exponent (1006.4220v1)

Published 22 Jun 2010 in nlin.CD

Abstract: One dimensional intermittent maps with stretched exponential separation of nearby trajectories are considered. When time goes infinity the standard Lyapunov exponent is zero. We investigate the distribution of $\lambda_{\alpha}= \sum_{i=0}{t-1} \ln \left| M'(x_i) \right|/t{\alpha}$, where $\alpha$ is determined by the nonlinearity of the map in the vicinity of marginally unstable fixed points. The mean of $\lambda_{\alpha}$ is determined by the infinite invariant density. Using semi analytical arguments we calculate the infinite invariant density for the Pomeau-Manneville map, and with it obtain excellent agreement between numerical simulation and theory. We show that $\alpha \left< \lambda_{\alpha}\right>$ is equal to Krengel's entropy and to the complexity calculated by the Lempel-Ziv compression algorithm. This generalized Pesin's identity shows that $\left< \lambda_{\alpha}\right>$ and Krengel's entropy are the natural generalizations of usual Lyapunov exponent and entropy for these systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.