Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 109 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Pesin-type relation for subexponential instability (1109.5419v2)

Published 26 Sep 2011 in cond-mat.stat-mech and nlin.CD

Abstract: We address here the problem of extending the Pesin relation among positive Lyapunov exponents and the Kolmogorov-Sinai entropy to the case of dynamical systems exhibiting subexponential instabilities. By using a recent rigorous result due to Zweim\"uller, we show that the usual Pesin relation can be extended straightforwardly for weakly chaotic one-dimensional systems of the Pomeau-Manneville type, provided one introduces a convenient subexponential generalization of the Kolmogorov-Sinai entropy. We show, furthermore, that Zweim\"uller's result provides an efficient prescription for the evaluation of the algorithm complexity for such systems. Our results are confirmed by exhaustive numerical simulations. We also point out and correct a misleading extension of the Pesin relation based on the Krengel entropy that has appeared recently in the literature.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.