An Effective Fingerprint Verification Technique (1006.2804v1)
Abstract: This paper presents an effective method for fingerprint verification based on a data mining technique called minutiae clustering and a graph-theoretic approach to analyze the process of fingerprint comparison to give a feature space representation of minutiae and to produce a lower bound on the number of detectably distinct fingerprints. The method also proving the invariance of each individual fingerprint by using both the topological behavior of the minutiae graph and also using a distance measure called Hausdorff distance.The method provides a graph based index generation mechanism of fingerprint biometric data. The self-organizing map neural network is also used for classifying the fingerprints.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.