Papers
Topics
Authors
Recent
2000 character limit reached

Computational Transition at the Uniqueness Threshold (1005.5584v1)

Published 31 May 2010 in cs.CC, math-ph, math.MP, and math.PR

Abstract: The hardcore model is a model of lattice gas systems which has received much attention in statistical physics, probability theory and theoretical computer science. It is the probability distribution over independent sets $I$ of a graph weighted proportionally to $\lambda{|I|}$ with fugacity parameter $\lambda$. We prove that at the uniqueness threshold of the hardcore model on the $d$-regular tree, approximating the partition function becomes computationally hard on graphs of maximum degree $d$. Specifically, we show that unless NP$=$RP there is no polynomial time approximation scheme for the partition function (the sum of such weighted independent sets) on graphs of maximum degree $d$ for fugacity $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$ where $\lambda_c = \frac{(d-1){d-1}}{(d-2)d}$ is the uniqueness threshold on the $d$-regular tree and $\epsilon(d)>0$. Weitz produced an FPTAS for approximating the partition function when $0<\lambda < \lambda_c(d)$ so this result demonstrates that the computational threshold exactly coincides with the statistical physics phase transition thus confirming the main conjecture of [28]. We further analyze the special case of $\lambda=1, d=6$ and show there is no polynomial time algorithm for approximately counting independent sets on graphs of maximum degree $d= 6$ which is optimal. Our proof is based on specially constructed random bi-partite graphs which act as gadgets in a reduction to MAX-CUT. Building on the second moment method analysis of [28] and combined with an analysis of the reconstruction problem on the tree our proof establishes a strong version of 'replica' method heuristics developed by theoretical physicists. The result establishes the first rigorous correspondence between the hardness of approximate counting and sampling with statistical physics phase transitions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.