Exact Parent Hamiltonian for the Quantum Hall States in a Optical Lattice
Abstract: We study lattice models of charged particles in uniform magnetic fields. We show how longer range hopping can be engineered to produce a massively degenerate manifold of single-particle ground states with wavefunctions identical to those making up the lowest Landau level of continuum electrons in a magnetic field. We find that in the presence of local interactions, and at the appropriate filling factors, Laughlin's fractional quantum Hall wavefunction is an exact many-body ground state of our lattice model. The hopping matrix elements in our model fall off as a Gaussian, and when the flux per plaquette is small compared to the fundamental flux quantum one only needs to include nearest and next nearest neighbor hoppings. We suggest how to realize this model using atoms in optical lattices, and describe observable consequences of the resulting fractional quantum Hall physics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.