Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups (1005.2773v1)

Published 16 May 2010 in math.FA

Abstract: The paper contains a generalization of known properties of Chebyshev polynomials of the second kind in one variable to polynomials of $n$ variables based on the root lattices of compact simple Lie groups $G$ of any type and of rank $n$. The results, inspired by work of H. Li and Y. Xu where they derived cubature formulae from $A$-type lattices, yield Gaussian cubature formulae for each simple Lie group $G$ based on interpolation points that arise from regular elements of finite order in $G$. The polynomials arise from the irreducible characters of $G$ and the interpolation points as common zeros of certain finite subsets of these characters. The consistent use of Lie theoretical methods reveals the central ideas clearly and allows for a simple uniform development of the subject. Furthermore it points to genuine and perhaps far reaching Lie theoretical connections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.