Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cubature rules from Hall-Littlewood polynomials

Published 2 May 2023 in math.NA, cs.NA, and math.CA | (2305.01282v1)

Abstract: Discrete orthogonality relations for Hall-Littlewood polynomials are employed, so as to derive cubature rules for the integration of homogeneous symmetric functions with respect to the density of the circular unitary ensemble (which originates from the Haar measure on the special unitary group $SU(n;\mathbb{C})$). By passing to Macdonald's hyperoctahedral Hall-Littlewood polynomials, we moreover find analogous cubature rules for the integration with respect to the density of the circular quaternion ensemble (which originates in turn from the Haar measure on the compact symplectic group $Sp (n;\mathbb{H})$). The cubature formulas under consideration are exact for a class of rational symmetric functions with simple poles supported on a prescribed complex hyperplane arrangement. In the planar situations (corresponding to $SU(3;\mathbb{C})$ and $Sp (2;\mathbb{H})$), a determinantal expression for the Christoffel weights enables us to write down compact cubature rules for the integration over the equilateral triangle and the isosceles right triangle, respectively.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.