Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generative and Latent Mean Map Kernels (1005.0188v1)

Published 3 May 2010 in cs.LG and stat.ML

Abstract: We introduce two kernels that extend the mean map, which embeds probability measures in Hilbert spaces. The generative mean map kernel (GMMK) is a smooth similarity measure between probabilistic models. The latent mean map kernel (LMMK) generalizes the non-iid formulation of Hilbert space embeddings of empirical distributions in order to incorporate latent variable models. When comparing certain classes of distributions, the GMMK exhibits beneficial regularization and generalization properties not shown for previous generative kernels. We present experiments comparing support vector machine performance using the GMMK and LMMK between hidden Markov models to the performance of other methods on discrete and continuous observation sequence data. The results suggest that, in many cases, the GMMK has generalization error competitive with or better than other methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.