Convex ordering and quantification of quantumness (1004.1944v2)
Abstract: The characterization of physical systems requires a comprehensive understanding of quantum effects. One aspect is a proper quantification of the strength of such quantum phenomena. Here, a general convex ordering of quantum states will be introduced which is based on the algebraic definition of classical states. This definition resolves the ambiguity of the quantumness quantification using topological distance measures. Classical operations on quantum states will be considered to further generalize the ordering prescription. Our technique can be used for a natural and unambiguous quantification of general quantum properties whose classical reference has a convex structure. We apply this method to typical scenarios in quantum optics and quantum information theory to study measures which are based on the fundamental quantum superposition principle.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.