Papers
Topics
Authors
Recent
2000 character limit reached

Effects of component-subscription network topology on large-scale data centre performance scaling (1004.0728v1)

Published 5 Apr 2010 in cs.DC

Abstract: Modern large-scale date centres, such as those used for cloud computing service provision, are becoming ever-larger as the operators of those data centres seek to maximise the benefits from economies of scale. With these increases in size comes a growth in system complexity, which is usually problematic. There is an increased desire for automated "self-star" configuration, management, and failure-recovery of the data-centre infrastructure, but many traditional techniques scale much worse than linearly as the number of nodes to be managed increases. As the number of nodes in a median-sized data-centre looks set to increase by two or three orders of magnitude in coming decades, it seems reasonable to attempt to explore and understand the scaling properties of the data-centre middleware before such data-centres are constructed. In [1] we presented SPECI, a simulator that predicts aspects of large-scale data-centre middleware performance, concentrating on the influence of status changes such as policy updates or routine node failures. [...]. In [1] we used a first-approximation assumption that such subscriptions are distributed wholly at random across the data centre. In this present paper, we explore the effects of introducing more realistic constraints to the structure of the internal network of subscriptions. We contrast the original results [...] exploring the effects of making the data-centre's subscription network have a regular lattice-like structure, and also semi-random network structures resulting from parameterised network generation functions that create "small-world" and "scale-free" networks. We show that for distributed middleware topologies, the structure and distribution of tasks carried out in the data centre can significantly influence the performance overhead imposed by the middleware.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube